Cosgrave Developments

Blackwood Square, Northwood, Santry Demesne, Dublin 9

Planning Application to An Bord Pleanala

Water Services Report

Document Control Sheet

Client:	Cosgrave Developments
Project Title:	Blackwood Square, Northwood, Dublin 9
Document Title:	Planning Application to ABP - Water Services Report

Table of Contents (incl. Y/N)	List of Tables	List of Figures	Pages of Text	Appendices
	(incl. Y/N)	(incl. Y/N)	(No.)	(No.)
Y	Ν	Ν	5	2

			Documen	t Verificatior	ı		
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
	Add	hyperlink to Ve	erification Ema	ail on PIM Reg	ister for each	issue	
24/05/2019	P01	A1	DMOD	SW	GF	GF	N/A
12/06/2019	P02	A1	DMOD	SW	GF	GF	N/A
04/10/2019	P03	A1	DMOD	SW	GF	GF	N/A
01/11/2019	P04	A1	DMOD	SW	GF	GF	N/A
15/11/2019	P05	A1	DMOD	SW	GF	GF	N/A

Table of Contents

SECTION 1:	INTRODUCTION	1
SECTION 2:	PRE-PLANNING MEETINGS	1
SECTION 3:	WATER SUPPLY	1
SECTION 4:	FOUL SEWER DESIGN	2
SECTION 5:	SURFACE WATER DESIGN	3
SECTION 6:	OPERATION/MAINTENANCE OF SUDS DEVICES	4
SECTION 7:	RELATED REPORTS	5
SECTION 8:	RELEVANT DRAWINGS	5

Appendix 1 IRISH WATER - CONFIRMATION OF FEASIBILITY STATEMENT IRISH WATER - STATEMENT OF DESIGN ACCEPTANCE Appendix 2 SURFACE WATER CALCULATIONS

SECTION 1: INTRODUCTION

- Cosgrave Developments are applying for Planning Permission to An Bord Pleanala (ABP) for a 1.1 residential development at Northwood, Santry, Dublin 9. The proposed development will consist of 331 apartments in four separate blocks, with mixed use commercial units and a childcare facility at ground floor level over basement car parking, and all associated site works including roads, footpaths, landscaping, site services, SuDS measures and sundry related works. This report has been prepared in support of the Planning Application. It takes account of the requirements of the Fingal County Development Plan (2017-2023).
- This Report addresses the following: 1.2
 - Pre-planning Meetings with Fingal County Council and An Bord Pleanala.
 - Water Supply.
 - Foul Sewer Design.
 - Surface Water Design
 - Operation and Maintenance of SUDS measures.
- A legal easement is in place between the Northwood Management Company Limited and 1.3 Cosgrave Property Group to permit surface water discharge to the Santry River and to allow for maintenance access whenever required. This will be relied upon until the services are taken in charge by Fingal County Council.

SECTION 2: PRE-PLANNING MEETINGS

- 2.1 Pre-planning meetings were held to discuss the proposed development with personnel from Fingal County Council on the following dates:
 - Water Services (Planning Dept): 5th March 2019 & 2nd May 2019
 - An Bord Pleanala: 2nd September 2019

SECTION 3: WATER SUPPLY

- 3.1 The proposed development will be supplied via the existing 200mm watermain in the Access Road as shown on Drawing 19205-JBB-00-XX-DR-C-01004 Rev P1. This 200mm main is supplied from the existing 600mm North Fringe Watermain in Northwood Avenue.
- 3.2 The daily water demand for the proposed development is estimated as follows:
 - Apartments

Daily Demand:	331units*2.7persons/unit	*150l/head/day = 134,460l/day
Average Demand:		134,460/24*3600 = 1.56l/sec
Average Day/Peak	Week (ADPW) Demand:	1.56l/sec*1.25 = 1.95l/sec
Peak Demand:	ADPW Demand*5	1.95l/sec*5 = 9.75l/sec
Retail:	25no	staff*60l/head/day = 1,500l/day
Average Demand:		1,500l/day/8*3600 = 0.05l/sec

ADPW Demand:	$0.05I/sec^{1.25} = 0.063I/sec$
Peak Demand:	$0.063 \text{I/sec}^{*5} = 0.31 \text{I/sec}$
Creche:	90no children + 20no staff*60l/head/day = 6,600l/day
Average Demand:	6,600l/day/8*3600 = 0.23l/sec
ADPW Demand:	0.23I/sec*1.25 = 0.29I/sec
Peak Demand:	$0.29I/sec^{5} = 1.45I/sec$
Accumulated Average	e Demand: 1.56l/sec+0.05l/sec+0.23l/sec = 1.84l/sec
Accumulated ADPW Demand	1.84l/sec*1.25 = 2.30l/sec
Accumulated Peak Demand:	2.30l/sec*5 = 11.50l/sec

- 3.3 Irish Water, in their Confirmation of Feasibility Statement (a copy of which is contained in Appendix 1), has confirmed that water supply to the proposed development is feasible without upgrades.
- Watermain works, Water Conservation Measures, Metering and Pressure Control will be strictly in 3.4 accordance with Irish Water and Fingal County Council requirements, specifications and standard details.
- 3.5 A Statement of Design Acceptance has been received from Irish Water, a copy of which is included in Appendix A.

SECTION 4: FOUL SEWER DESIGN

- 4.1 The development will be connected to the existing 222mm diameter foul in the access road as shown on drawing 19205-JBB-00-XX-DR-C-01003 Rev P5. This sewer is connected to the North Fringe Sewer at the roundabout on Northwood Avenue.
- 4.2 The estimated Dry Weather Flows (DWF's) from this development are as follows:

331Units*446l/unit/day	= 148,072l/day
1DWF (146,288l/day/24*3600)	= 1.71l/sec
6DWF (6*1.71l/sec)	= 10.26l/sec

- 4.3 Within the development, it is proposed to lay the 225mm diameter foul sewers at the minimum gradient of 1 in 200 to achieve self-cleansing velocities.
- Sewers 150mm dia or less will be uPVC to B.S 4660. Sewers 225mm diameter greater will be 4.4 spigot and socket pipes Class S to I.S. 6.
- 4.5 Irish Water, in their Confirmation of Feasibility Statement (a copy of which is included in Appendix 1), has confirmed that there is capacity in their wastewater infrastructure to cater for this development without upgrades.
- 4.6 Foul sewer construction will comply with Fingal County Council and Irish Water's requirements, specification and standard details.
- 4.7 A Statement of Design Acceptance has been received from Irish Water, a copy of which is included in Appendix A.

SECTION 5: SURFACE WATER DESIGN

- 5.1 The foul and storm sewer networks will be on the separate systems. No foul effluent will discharge to the storm water system.
- 5.2 Details of the proposed surface water network and the proposed SuDS measures for this development are shown on drawings 19205-JBB-00-XX-DR-C-01001 Rev P2, 19205-JBB-00-XX-DR-C-01002 Rev P5 and 19205-JBB-00-XX-DR-C-01007 Rev P3.
- 5.2 At the Pre-Planning meeting with An Bord Pleanala, Fingal County Council noted that the previous proposal to infill the existing ditch with a Stormtech attenuation/infiltration system was not acceptable. It was therefore agreed that the existing ditch will be infilled with single sized stone to act as a natural watercourse.
- 5.3 SuDS (Sustainable Urban Drainage Systems) are described in CIRIA 753, SuDS Manual as 'Drainage systems that are considered to be environmentally friendly, causing minimal or no long-term detrimental impact'.

A similar definition of SuDS is included in Appendix A, Glossary, Volume 3, Environmental Management, Greater Dublin Strategic Drainage Study.

The SuDS strategy for the Development provides a comprehensive approach to the management of surface water on the site including: water quality and water quantity. The treatment train approach has been adopted for the design of the surface water system for the Development. This approach uses suitable SuDS measures in providing source control and site control. The stormwater treatment train in defined in Appendix A, Glossary, Volume 3, Environmental Management, Greater Dublin Strategic Drainage Study as follows:

'A series of SuDS, each designated to treat a different aspect of runoff that are implemented together to maximise their effectiveness'.

The SuDS measures proposed for this Development are discussed under the following headings:

- Source Control
- Site Control

Source Control

Source Control measures can be defined as "*the control of runoff at or near its source*" (in the case of this development the individual buildings, roads, footpaths, hard standings, carparks, podium).

Source controls proposed for this development include the following as shown in Table 1 below:

Source Control Measures	Location / Treatment Area
Green Roofs	Roofs (Blocks A-D)
Permeable paving	Footpaths/Hardstanding and podium
Hydrocarbon Interceptor	Roofs/Hardstanding

Table 1-Source Control Measures

An extensive green roof is proposed for Blocks A, B, C & D. A typical cross section of the roof makeup is shown on Drawing 19205-JBB-00-XX-DR-C-01007 Rev P3. The green roof details will be in accordance with the SUDS Manual, CIRIA 753, 2015 and relevant Fingal County Council Guidelines. This extensive green roof could reduce the annual run-off by 40 to 70%.

The proposed permeable paving has provision for outflows(overflows) from the permeable paving to the surface water infrastructure (including the existing Attenuation Tank) which discharges to the Santry River in the North-West corner of the existing development.

The permeable paving has storage (attenuation) capacity to cater for the 1:100-year critical storm event plus 20% for climate change with restricted outflows limited to 2l/sec to the proposed surface water infrastructure if necessary.

There is capacity in the existing Attenuation Tank to cater for the peak flow of 368.5 // generated from the 1 in 100 year + 20% for climate change from the proposed development. A Micro-Drainage analysis of the system was carried out and is attached in Appendix 2.

Site Control

Site Control is defined as: 'a control which is designed to control storm water quality and/or quantity for a small development or site'.

Site control proposed for this development includes the existing Attenuation Tank located in the North-West of the existing development. Surface water from the existing development (3.5 ha's) plus the proposed development (1.49 ha's) will pass through this tank prior to discharge to the Santry River. The maximum restricted runoff rate of 14.6l/sec from the existing tank equates to the 1 in 100year greenfield rate for the existing development plus the proposed development and will not have any significant impact on the Santry River.

The surface water runoff from all hardstanding areas including the roof, podium, private roads, hardstanding's and associated footpaths has the potential of passing through a minimum of two SuDS measures.

- 5.4 All SuDS measures under Source and Site Controls will be agreed with Fingal County Council.
- 5.5 The storm water run-off from the Development will pass through a minimum of 2 SuDS Devices. This treatment train approach complies with Volume 2, New Development, GDSDS.
- 5.6 The storm water system will be in accordance with "The Regional Code of Practice for Drainage Works".

SECTION 6: OPERATION/MAINTENANCE OF SUDS DEVICES

- 6.1 The SuDS components proposed for this development will be operated and maintained strictly in accordance with the requirements of the SuDS Manual, CIRIA 753, 2015 to ensure that "water quality standards are maintained".
- 6.2 Each SuDS component proposed is referenced below to the relevant operation and maintenance sections of CIRIA 753, 2015 where appropriate:
 - Permeable pavements will be operated and maintained in accordance with Part D, Sub-Section 20.14 including Table 20.15 and Section 32 of CIRIA 753

- The hydrocarbon interceptor shall be operated and maintained in accordance with Part D, Sub-Section 14.12 including Table 14.2, Section 32 of CIRIA 753 and the Manufacturer's requirements.
- The existing Attenuation Tank shall be operated and maintained in accordance with Section D, Sub-Section 21.12 including Table 21.3, Section 32 of CIRIA 753 and the Manufacturer's requirements where appropriate.
- Waste management of the various SuDS components proposed for the proposed development will be carried out strictly in accordance with Section 33 of CIRIA 753.

SECTION 7: RELATED REPORTS

7.1 A Flood Risk Assessment has been prepared as a separate document.

SECTION 8: RELEVANT DRAWINGS

8.1	Drawing No	Title
	19205-JBB-00-XX-DR-C-01001 Rev P3	Foul & Storm Water Sewers Outfall Locations
	19205-JBB-00-XX-DR-C-01002 Rev P5	Proposed Storm Sewers Layout
	19205-JBB-00-XX-DR-C-01003 Rev P8	Proposed Foul Sewers Layout
	19205-JBB-00-XX-DR-C-01004 Rev P6	Proposed Watermain Layout
	19205-JBB-00-XX-DR-C-01005 Rev P3	Typical Foul Sewer Drainage Details
	19205-JBB-00-XX-DR-C-01006 Rev P1	Typical Surface Water Sewer Drainage Details
	19205-JBB-00-XX-DR-C-01007 Rev P3	Proposed SuDS Devices Details
	19205-JBB-00-XX-DR-C-01008 Rev P2	Typical Watermain Details (Sheet 1)
	19205-JBB-00-XX-DR-C-01009 Rev P2	Typical Watermain Details (Sheet 2)
	19205-JBB-00-XX-DR-C-01014 Rev P1	Proposed Basement Storm Sewer Layout
	19205-JBB-00-XX-DR-C-01015 Rev P6	Combined Foul & Storm Sewers Layout

Appendix 1

Irish Water

Confirmation of Feasibility Statement

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Dan O Donoghue Classon House Dundrum Business Park Dundrum Road, Dublin 14

8 March 2019

Dear Dan O Donoghue,

Re: Connection Reference No CDS19000341 pre-connection enquiry - Subject to contract | Contract denied

Connection for Mixed Use Development of 333 units at Northwood, Santry, Co. Dublin.

Irish Water has reviewed your pre-connection enquiry in relation to a water connection at Northwood, Santry, Co. Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

This Confirmation of Feasibility to connect to the Irish Water infrastructure also does not extend to your fire flow requirements. Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.

New connections to Irish water and wastewater networks in Northwood Avenue are feasible without upgrade subject to following:

The proposed water and wastewater connections for this development connect to the Irish Water network via infrastructure that has not been taken in charge by Irish Water (Third Party Infrastructure). Please be advised that at connection application stage and prior to the commencement of any Self-Lay Works, you have to:

 identify and procure transfer to Irish Water of the arterial water and wastewater Infrastructure within the Third Party Infrastructure

 demonstrate that the arterial infrastructure are in compliance with requirements of Irish Water Code of Practice and Standard Details and in adequate condition and capacity to cater for additional load from the Development.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details.

Stiårthöiri / Directors: Mike Quinn (Chairman), Eamon Gallen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan

Oifig Chláraithe / Registered Office: Teach Colvil, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, DOI NP86 / Colvil House, 24-26 Talbot Street, Dublin 1, DOI NP86 / Souideachta ghniomhalochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

A connection agreement can be applied for by completing the connection application form available at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marina Zivanovic Byme from the design team on 01 89 25991 or email mzbyme@water.ie. For further information, visit <u>www.water.ie/connections</u>,

Yours sincerely,

M Buyer

Maria O'Dwyer

Connections and Developer Services

Stiärthöiri / Directors: Mike Quinn (Chairman), Eamon Gailen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Dan O Donoghue Classon House Dundrum Business Park Dundrum Road Dublin 14

29 October 2019

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Design Submission for Northwood, Santry, Co. Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS19000341

Dear Dan O Donoghue,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Marina Zivanovic Byrne Phone: 01 89 25991 Email: mzbyrne@water.ie

Yours sincerely,

M Duge

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan, Maria O'Dwyer, Yvonne Harris Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Appendix A

Document Title & Revision

- [19205-JBB-00-XX-DR-C-01003_Foul_Sewer_P7]
- [19205-JBB-00-XX-DR-C-01004_Watermain_Layout_P6]
- [19205-JBB-00-XX-DR-C-01015_Combined SW_FS_P4]
- [191022 -Foul Long Sections]
- [191022 -Foul Report]

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix 2

Surface Water Calculations (Micro-Drainage Analysis)

J.B. Barry & Partners Ltd								Pac	je 1			
Classon House Northwood												
Dundrum Business Park 1-30-100 year Return Period												
Dublin 14						M						
Date 14/11/2019 10:43 Designed by JB Barry												
File 192	205-MD	SW E	201.0	2.MDX	Ch	ecked by						dlidye
Innovyze	e				Ne	twork 2019	9.1					
	-	STORM	I SEW	ER DESI	IGN by	the Modif	ied Ra	ation	al M	etho	<u>1</u>	
				Des	<u>ign Cr</u>	<u>iteria for</u>	<u>Stor</u>	<u>m</u>				
			D.									
			Ρı	pe Sizes	STANDA	RD Manhole :	Sizes S	STANDA	RD			
			F	SR Rainf	all Mode	l - Scotlan	d and	Irelar	nd			
		Retui	n Pei	riod (yea	ars)	100		- /			PIMP (%) 100
				M5-60 Bati	(mm) 16.	300	Add F	low /	Clim	ate Ch ron 40	ange (%) U
	Ma	ximum	Raint	fall (mm,	/hr)	50	Max	imum E	Backd	rop He	eight (m) 0.000
Maximum	Time o	f Cond	centra	ation (m	ins)	30 Min Des	ign De	pth fo	or Op	timisa	tion (m) 1.200
		Foul	L Sewa	age (l/s,	/ha) 0.	000 Min	Vel fo	r Auto	Des	ign or	nly (m/	s) 1.00
	Vo	lumeti	ric Ri	inott Coe	eff. 0.	/50 Mi	n Slop	e for	Opti	mısatı	on (1:	X) 500
				De	signed w	ith Level I	nverts					
							_					
				<u>Netwo</u> ı	rk Desi	qn Table :	<u>for St</u>	lorm				
DN ·	Length	Fall	Slop	o T Aros	יד די	Base	۲	HYD	ΔΤΠ	Secti	OD TWD	
	(m)	(m)	(1:X) (ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)	50002		Design
g1 000	50 212	0 252	200	0 0 2 2 7	5 00	0.0	0 600		275	Dino	Condui	+ 0
S1.000	72.562	0.252	200.	0 0.327	0.00	0.0	0.600	0	375	Pipe/	'Condui	t 🗗
S1.002	31.453	0.184	170.	9 0.064	0.00	0.0	0.600	0	375	Pipe/	'Condui	t 💣
S1.003	10.752	0.064	168.	0 0.000	0.00	0.0	0.600	0	375	Pipe/	'Condui	t 🕂
\$2 000	52 565	0 263	199	9 0 2 9 3	5 00	0 0	0 600	0	375	Pine	Condui	+ A
S2.000	66.591	0.333	200.	0.268	0.00	0.0	0.600	0	375	Pipe/	'Condui	t 🗗
S2.002	6.069	0.042	144.	5 0.000	0.00	0.0	0.600	0	375	Pipe/	'Condui	t 💣
S2.003	39.198	0.236	166.	1 0.132	0.00	0.0	0.600	0	375	Pipe/	Condui	t 💣
S2.004	12.111	0.072	168.	2 0.000	0.00	0.0	0.600	0	375	Pipe/	Condui	t 🗗
S1.004	6.513	0.039	167.	0 0.000	0.00	0.0	0.600	0	600	Pipe/	/Condui	t 🔒
				<u>N</u>	etwork	Results I	<u>able</u>					
DN	Dei			110 / TT		N De ee	Tere 1	7 - 1 - 1 - 1		17-1	0	T]
PN	(mm/1	hr) (m	ins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/	s)	(m/s)	(1/s)	(1/s)
			-					. ,				
S1.00	0 50	.00	5.66	57.105	0.327	0.0	0.0		0.0	1.28	141.1	44.3
SI.00	11 50	.00	0.6U	56 /01	0.5/6	0.0	0.0		0.0	1 20	150 7	/ö.⊥ 96 7
S1.00 S1.00	,∠ 50)3 50	.00	7.11	56,307	0.640	0.0	0.0		0.0	1.40	154 1	86.7
51.00	,, ,,		′•⊥⊥	50.507	0.040	0.0	0.0		0.0	1.40	+94.T	00.7
S2.00	0 50	.00	5.69	56.705	0.293	0.0	0.0		0.0	1.28	141.1	39.6
S2.00	1 50	.00	6.55	56.368	0.560	0.0	0.0		0.0	1.28	141.1	75.9
S2.00	02 50	.00	6.62	56.034	0.560	0.0	0.0		0.0	1.51	166.2	75.9
S2.00	03 50	.00	7.09	55.992	0.692	0.0	0.0		0.0	1.40	155.0	93.7
s2.00	04 50	.00	7.23	55.756	0.692	0.0	0.0		0.0	1.39	154.0	93.7
S1.00	4 50	.00	7.29	55.610	1.332	0.0	0.0		0.0	1.88	532.0	180.4
					002	0.0	0.0					

©1982-2019 Innovyze

J.B. Barry & Partners Ltd		Page 2
Classon House	Northwood	
Dundrum Business Park	1-30-100 year Return Period	
Dublin 14		Mirro
Date 14/11/2019 10:43	Designed by JB Barry	
File 19205-MD SW P01.02.MDX	Checked by	Diamage
Innovyze	Network 2019.1	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S5	58.000	0.895	Open Manhole	1350	S1.000	57.105	375				
S4	58.000	1.147	Open Manhole	1350	S1.001	56.853	375	s1.000	56.853	375	
S3	58.200	1.709	Open Manhole	1350	S1.002	56.491	375	S1.001	56.491	375	
S2	58.000	1.693	Open Manhole	1350	S1.003	56.307	375	S1.002	56.307	375	
S1.5	58.000	1.295	Open Manhole	1800	S2.000	56.705	375				
S1.4	58.000	1.632	Open Manhole	1500	S2.001	56.368	375	s2.000	56.442	375	74
S1.3	57.600	1.566	Open Manhole	1350	S2.002	56.034	375	s2.001	56.035	375	1
S1.2	57.650	1.658	Open Manhole	1350	S2.003	55.992	375	S2.002	55.992	375	
S1.1	58.000	2.244	Open Manhole	1350	S2.004	55.756	375	s2.003	55.756	375	
S1	58.300	2.690	Open Manhole	1500	S1.004	55.610	600	S1.003	56.243	375	408
								S2.004	55.684	375	
SMHEX	57.700	2.129	Open Manhole	0		OUTFALL		S1.004	55.571	600	

©1982-2019 Innovyze

J.B. Barry & Partners Lt	d				Page 3
Classon House		Northwood			
Dundrum Business Park		1-30-100 y			
Dublin 14					Micco
Date 14/11/2019 10:43		Designed b	y JB Barry		
File 19205-MD SW P01.02.	MDX	Checked by			Digitiga
Innovyze		Network 20	19.1		
	<u>Manhole</u>	Schedules :	<u>for Storm</u>		
MH Manhole Name Easting M (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
s1.1 315842.702 24	40861.457	315842.702	240861.457	Required	
S1 315834.659 24	40870.512	315834.659	240870.512	Required	4
SMHEX 315836.615 24	40876.725			No Entry	
					Ĭ
	©198	82-2019 Inno	ovyze		

J.B. Barry & Partners Ltd		Page 4
Classon House	Northwood	
Dundrum Business Park	1-30-100 year Return Period	
Dublin 14		Mirro
Date 14/11/2019 10:43	Designed by JB Barry	
File 19205-MD SW P01.02.MDX	Checked by	Diamacje
Innovyze	Network 2019.1	

<u>PIPELINE SCHEDULES for Storm</u>

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
~1 ~~~			~ 5	50.000		0 500		1050
SI.000	0	375	S5	58.000	57.105	0.520	Open Manhole	1350
S1.001	0	375	S4	58.000	56.853	0.772	Open Manhole	1350
S1.002	0	375	s3	58.200	56.491	1.334	Open Manhole	1350
S1.003	0	375	s2	58.000	56.307	1.318	Open Manhole	1350
S2.000	0	375	S1.5	58.000	56.705	0.920	Open Manhole	1800
S2.001	0	375	S1.4	58.000	56.368	1.257	Open Manhole	1500
S2.002	0	375	S1.3	57.600	56.034	1.191	Open Manhole	1350
S2.003	0	375	S1.2	57.650	55.992	1.283	Open Manhole	1350
S2.004	0	375	S1.1	58.000	55.756	1.869	Open Manhole	1350
S1.004	0	600	S1	58.300	55.610	2.090	Open Manhole	1500

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	50.313	200.0	S4	58.000	56.853	0.772	Open Manhole	1350
S1.001	72.562	200.0	S3	58.200	56.491	1.334	Open Manhole	1350
S1.002	31.453	170.9	S2	58.000	56.307	1.318	Open Manhole	1350
S1.003	10.752	168.0	S1	58.300	56.243	1.682	Open Manhole	1500
S2.000	52.565	199.9	S1.4	58.000	56.442	1.183	Open Manhole	1500
S2.001	66.591	200.0	S1.3	57.600	56.035	1.190	Open Manhole	1350
S2.002	6.069	144.5	S1.2	57.650	55.992	1.283	Open Manhole	1350
S2.003	39.198	166.1	S1.1	58.000	55.756	1.869	Open Manhole	1350
S2.004	12.111	168.2	S1	58.300	55.684	2.241	Open Manhole	1500
							-	
S1.004	6.513	167.0	SMHEX	57.700	55.571	1.529	Open Manhole	0

Free Flowing Outfall Details for Storm

Out Pipe	fall Number	Outfall Name	c.	Level (m)	Ι.	Level (m)	Ι.	Min Level (m)	D,L (mm)	W (mm)
	S1.004	SMHEX	ļ	57.700	ļ	55.571		0.000	0	0

J.B. Barry & Partners Ltd					
Classon House	Northwood				
Dundrum Business Park	1-30-100 year Return Period				
Dublin 14					
Date 14/11/2019 10:41	Designed by JB Barry				
File 19205-MD SW P01.02.MDX	Checked by				
Innovyze	Network 2019.1				

MH Name	S5		S 4	
Hor Scale 500				
Ver Scale 250				
Datum (m)52.000				
PN		S1.000		S1.001
Dia (mm)		375		375
Slope (1:X)		200.0		200.0
	0		00	
Cover Level (m)	00.		00.	
	20		20	
	10		~ ~	
Invert Level (m)	10			
	- <u>-</u>			
	ניז		(1) (1)	
Length (m)		50.313		72.562

S3	S2	S1	SMHEX
		2.004	-
]
S1.002	S1.003	S1.004	
375	375	600	
170.9	168.0	167.0	
0	00	00	00
	0.	с. 	L
ñ	Ω ω	ñ	μ Δ
L C	L()	1 0 1	
4.	е.	й <u>о</u>	
م م			
31.453	10.752	6.513	
	1		1
	S3 S3 S1.002 S1.002 375 170.9 00 85 S1.002 375 170.9 00 5 85 S1.002 375 170.9 00 5 85 S1.002 375 170.9 00 5 85 S1.002 375 170.9 00 85 S1.002 375 170.9 00 85 S1.002 375 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 00 85 S1.002 37.5 170.9 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5	\$3 \$2 \$3 \$2 \$1.002 \$1.003 \$1.002 \$1.003 375 375 170.9 168.0 \$6 \$6 \$7 \$6 \$6 \$6 \$7 \$1.003 375 375 375 168.0 \$6 \$6 \$7 \$6 \$6 \$6 \$7 \$6 \$6 \$6 \$7 \$6 \$31.453 10.752	\$3 \$2 \$1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

©1982-2019 Innovyze

Page	1	-
	Micro	
	Desinado	
	Diamaye	
	\$3	
	00	
	ñ	
49.		
•		
Ŋ		
	Т	

J.B. Barry & Partners Ltd					
Classon House	Northwood				
Dundrum Business Park	1-30-100 year Return Period				
Dublin 14					
Date 14/11/2019 10:41	Designed by JB Barry				
File 19205-MD SW P01.02.MDX	Checked by				
Innovyze	Network 2019.1				

MH Name	\$1.5	S1.4
Hor Scale 500		
Ver Scale 250		
Datum (m) 51.000		
PN	\$2.000	\$2.001
Dia (mm)	375	375
Slope (1:X)	199.9	200.0
Course Lougl (m)	0	0
Cover Level (m)	0. m	0 · m
	м И	۵ ۵
	4 2 05	ω (γ
Invert Level (m)		m.
		ы Б
Length (m)	52.565	66.591

MH Name	S1.2	S1.1 S1
		1 003
Hor Scale 500		
Ver Scale 250		
Datum (m) 51.000	\$2.003	\$2,004
Dia (mm)	375	375
Slope (1:X)	166.1	168.2
	20	0 0
Cover Level (m)	. 6	
	۵ ا	۵ N
Invert Level (m)	98 9	2 2 5 8 4 7 5 6
	5. 2	
	u)	
Length (m)	39.198	12.111
	@1000.0010 Taxarra	
	©1902-2019 INNOVY2	

	Daga 2		
	Page 2	Micro Drainage	
		S1.2	
	600	650	
	57.	57.	
10	51 0		
0	.03.		
0 ك	55 55		
		·	